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Abstract 

It is possible to reconstruct a given space-time (M, g) furnished with a 2-form #2 (the elec- 
tromagnetic strength) from the 6-dimensional manifold parametrizing the world-lines in M of the 
particles with rest-mass m0 (or 0) and charge 5:e0 (or 0). 
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O. Introduct ion 

The paper [C] shows how to reconstruct a space- t ime (M, g) (points and metric tensor) 

from the manifold E of  "geodesics" of  M; the present article extends that result and shows 

how it is possible to reconstruct a given space- t ime (M, g) furnished with a 2-form #2 (the 

electromagnetic strength) from the manifold of the world-lines in M of the particles with 

rest-mass mo (or 0) and charge -4- e0 (or 0). 

Given a complexified space- t ime (M, g) furnished with a holomorphic 2-form #2 coming 

from the curvature of a Kaluza-Kle in  holomorphic principal C*-bundle rr : P --+ M 

supplied with a holomorphic connection o9, the world-lines in M of the particles with 

rest-mass and charge (m0, + e0) or (0, 0), in general, make a manifold E of  (complex) 

dimension 6 where the world-lines of particles with zero rest-mass make a hypersurface E0 

of dimension 5; on the other hand given a suitable metric to P ,  it is possible to "lift" every 

world-line in M to a null geodesic of  P defined up to the action of C*. 

Therefore the space N of  null geodesics of  P is, in general, a manifold of  dimension 7 

such that N / C *  = E and, in the favorable cases, the projection map e : N ~ E sending 

null geodesics of  P to world-lines of  M makes N a principal C*-bundle on E. 
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Starting with the bundle N ~ E, it is possible to reconstruct (M, g) and (P ,  09) (and 

then S2) by exploiting only the complex manifold structures. 

In addition the world-lines in M are reobtained as curves defined in a natural way by 

E and N; this is possible because there is a contact structure on E. This structure does 

not intervene in the reconstruction of re : (P ,  09) --+ (M, g) but simply it guarantees that 

deformations due to "torsion terms" will not get into in the reconstruction of  the world-lines. 

The last section of  this paper will analyze under which conditions there can be a contact 

structure on such a bundle and will furnish a necessary and sufficient condition in the 

presence on Eof  a meromorphic symplectic form with poles of  a well defined type on Eo; 

this symplectic form, moreover, will be shown to verify Weil 's  integrality conditions. 

1. From space-time to the space of world-lines 

Definition 1.1. A Kaluza-Kle in  structure is a 5-tuple (P ,  Jr, M, g, 09) where M is a complex 

manifold, g is a holomorphic Riemannian metric on M, the map zr : P ~ M makes P a 

principal holomorphic C*-bundle on M and 09 is a holomorphic connection 1-form on P.  

The action of  C* on P defines a fundamental holomorphic vector field A such that 

r r . (A)  = 0 and 09(A) = 1. It will be denoted by I2, the curvature holomorphic 2-form of 

the structure (defined locally as ~ = 00-*09 for any local section 0- : U ~ P)  and (M, g) 

will be interpreted as a complexified space- t ime with I2 as an electromagnetic field strength 

on M. 

With respect to the structure (M, g, $2) we will consider only particles with "mass and 

charge" in the "triplet" (mo, - eo), (0, O) and (mo, eo) (that is of the form (0 -2 • mo, 0- • eo) 

where mo and eo are fixed constant numbers in C* and 0- c { -  1, O, 1 }). 

Definition 1.2. A worM-line o f  a particle in the triplet is a couple (0-, c~) of a "sign" 0- c 

{ -  1,0, 1 } and a regular holomorphic map ot : D ~ M defined on a simply connected open 

region D of  C such that 

V ~  = 0- • eo" (1" J2 J60 and g(a ,6 t )  = 0-2. m 2. 

In the following will be fixed the constant k --  mo/eo.  

On the manifold P we will consider the non-degenerate holomorphic Riemannian metric 

gl defined by 

gZ(X1, Y')  = g ( z r . (X ' ) ,  7r.(Y')) - k 2 • w ( X ' )  • w ( Y ' ) ,  

this metric is invariant by the action of  C* and verifies the equality: g1(A, A)  = - k  2. 

Theorem 1.3. For every world-line (0-, or) : D ~ M there exists a null geodesic y in P 

such that :r o y : ot and 09(~ ) : 0- • eo. The null geodesic y is defined up to the action 

o f  C*. Conversely f o r  every null geodesic y : D --+ P the map :r o y : D ~ M with a 

suitable changement  o f  the affine parameter  is a world-line o f  a particle in the triplet. 
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Proof Since the problem is local we choose a trivializing open subset U of  M with coordi- 

nates z j on U and a coordinate w on C*, such that 0w = A. The connection form expressed 

as co = coj • Oz j + Ow, we have to look for a holomorphic function/3 : D ~ C such that 

the curve y( t )  = (a f t ) , /3 ( t ) )  is null and stationary with respect to the functional defined 

by the "arc-length" E : T ' P  ---> C given by E(X ' )  = g'(Xr, X ') = £ . ( Z , w , Z , W )  = 

g,w(z) • Z " .  Z b - k 2 • [coa (z) • Z a + W] 2, that is verifying the two Lagrange equations 

(1) co/y = constant = Q, 

(2) Vart = Q .  (I" ~2]6t), 

and moreover the nullity condition 

(3) g ( a ,&)  - k 2 • Q2 = 0. 

Since a is the world-line of  a particle in the triplet it is enough to take a holomorphic 

function/3 : D --+ C such that/~ = a • e0 - coj " 0 / J  and consider Q = cr • eo. [] 

Definition 1.4. The space o f  signed tangent vectors o f  ( M, g) is the regular hypersurface 

~ ( T ' M )  = {[Y,h] E P ( T ' M  x C): g(Y,  Y) --  h 2} . 

For every world-line (a ,  c~) it is well defined a map 6ta : D ~ ~ ( T ' M )  by &~, (z) : 

[6~(z), cr.  m0]. The maps &a describe regular curves that foliate 5 ( T ' M ) .  

If (0, ~) is a null geodesic of  M and ~ '  is an affine reparametrization o f u  then ~0 and &~ 

run in the same leaf of  ~(TrM) .  Moreover  if otr(z) = ~(z  + u) then &~ and c% ~~ run in the 

same leaf and if c~'(z) = o t ( - z  + u) then ~ and ~_~ run in the same leaf. 

Conversely if  &a and c%-' run in the same leaf (with a common point) then one of the 

above three cases takes place. 

Definition 1.5. The space of  leaves of  the maps ~a in ~ ( T t M )  will be called the space 

E ( M) ---- E ( M, g, co) o f  the world-lines for  the particles in the triplet. 

We will denote by N ( P )  the space of  null geodesics in (P ,  g ' )  (cf. [L]), that is the space 

Q ( P )  = {[x r] E PTPP: g~(X', X t) = 0} (the space of null directions of P)  modulo 

the equivalence identifying two directions on a same null geodesic of  P .  This equivalence 

foliates Q ( P )  and N ( P )  is exactly the space of the leaves of Q ( P ) .  

The projection of  the null geodesics of  P on the world-lines of  M defines a surjective 

map e : N ( P )  ~ E ( M )  given by e (leaf of [Xr]) = leaf of  [ : r . (X ' ) ,  k • co(Xt)]. 

The action of C* on P gives an action of  C* on N ( P )  whose orbits are precisely the 

fibres of  6. 

2. Return to Kaluza-Klein 

This section intends to show how to reobtain the Kaluza-Kle in  structure (P ,  w, Jr, M, g) 

from the map 6 : N ( P )  ~ E ( M )  when it defines a C*-principal bundle. 
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The first problem is to recognize the points of P in N (P); each point pl in P gives origin 
to the family Qp, of all null geodesics in P coming out from pt. The subset Qp, is, in general, 

a submanifold of N ( P )  biholomorphic to (n - 1)-dimensional quadric (cf. [L]). Moreover 
the normal bundle N Qp, to this submanifold is of a well determined type and there exists 
a natural isomorphism between the space T r, M of (holomorphic) tangent vectors in p~ and p 
the space H°(Qp,,  (Q(NQp,)) of holomorphic sections of the normal bundle. Throughout 
this isomorphism the null tangent vectors are in correspondence with those sections that 

vanish somewhere. 
Collecting in N ( P )  all submanifolds biholomorphic to a (n - l)-dimensional quadric 

with that special type of normal bundle, it is obtained a family parametrized by a manifold C" 

of dimension (n + 1); the action o~ of C* on N ( P )  moves to an action of C* on C and defines 

a fundamental holomorphic vector field A on C' (given by Ac = (O/Oz) Iz=0 (Otez (c))). 
For every c e C the tangent space Tc~C is naturally isomorphic to H°(Qc,  O(NQc))  and 

the subset 3c of all vectors in T c' corresponding to sections of N Qc with a zero somewhere 
is a cone projecting a regular quadric to the infinity exactly as a set of "null vectors" in T,! 

should be (cf. [L, Ili.2]). 
Discarding those points c e C where Ac is in ,~c we get an open subset C of C. In 

the interesting cases the manifold C contains P as an open subset and it has the same 
fundamental field A and the same null vectors. 

The field A and the null vector cones 3¢ suffice to reconstruct the metric tensor g~ and the 

connection 1-form ~o on P; in fact gt is the only C-bilinear symmetric form on Tc ~ having Ec 
as set of null vectors with g~(A, A) = - k  2 and ~o is given by og(X t) = - 1 / k  2 • g'(A, XI). 

The space of the orbits of C by the action of C* is a manifold R of dimension n containing, 
in the interesting cases, the manifold M. The metric on M and the 2-form ~ are obtained 
respectively projecting the metric g~ and considering the curvature form of the principal 

bundle C --~ R. 
In the proof of the following theorem some properties from the theory of deformations 

of complex manifolds will be needed, that can be so summarized (cf. [K,KS]). 
Let Qo be a compact complex submanifold of a manifold F whose normal bundle N Qo 

satisfies the condition H 1 (Qo, O ( N  Q0)) = 0, then there exists a (Kodaira) manifold C = 

C(Qo) (the manifold parametrizing the deformations of Qo) of complex dimension d = 
dime H°(Qo, O(NQo))  with a distinguished element co and a submanifold/C of F x C 
(the total manifold of the deformation) such that the projection map pr2 : IC --+ C is a 
regular proper surjection and Qo = prl[1C A (F x {co})]. 

Denoted by prz : 1C --+ F the projection on the first factor, this implies that as c varies 
in C the subsets Qc = prl [/C A (F x {c})] = prl (ICe) are compact complex submanifolds 
of F "deforming" the complex structure of Q0 (it can be proved that all these manifold 
are isomorphic from the real differentiable viewpoint but not, in general, from the complex 
differentiable (holomorphic) viewpoint). 

For every c e C the normal bundle of/Cc in/C is a trivial bundle on a compact manifold 
therefore the map pr2, : H°(ICc, O(NICc)) ~ T~ is well defined and a linear isomorphism. 
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The map prl .  : H°(/Cc, O(NICc)) --+ H°(Qc, O(NQc))  instead is not, in general, an 
isomorphism; however under the condition H l (Qo, O(N  Qo)) = 0 this is true and for every 

c in the Kodaira manifold C the map prl .  o pr~. 1 : T, fC --+ H°(Qc, O(NQc))  is a natural 

isomorphism (cf. [KI). 
If moreover the conditions H l (Qo, O(TIQo)) = 0 and H l (Qo, O(NQo ® N Q~)) = 0 

hold then Qo and its normal bundle are locally "rigid", that is for every c in an open 

subset C ' (Qo)  of  C(Qo)  (containing co ) the couple (Qc, N Qc) is isomorphic to the couple 

(Qo, NQo) (cf. [KS]). 
Given a compact complex manifold K and a holomorphic vector bundle V on K, if the 

three conditions: H 1 (K, O(V))  = O, H l (K, O(T'  K)) = 0 and H 1 (K, O(V ® V*)) = 0 

hold and in F there is a submanifold Qo such that (Qo, N Qo) is isomorphic to the couple 
(K, V) it is possible to define the space, 

C (K ,  V) = {c E C(Qo):  (Q¢, NQc) is isomorphic to (K, V)}, 

of  all compact  submanifolds of  F biholomorphic to K with prescribed normal bundle 

isomorphic to V. 
The space C(K,  V) is equal to the space C'(Qo) given above and is therefore a complex 

manifold of  dimension d = dim H°(K,  O(V)) .  
The regular m-dimensional quadric Q,n in pm+l and the bundle TtP  m+l ]a m ~ H* 

verify the three conditions given above (cf. [L, 1II.2]) and dim H°(Q m, O(TtP m+l ]om 

H*)) = m + 2 (for m >_ 2) therefore for every complex manifold F it is possible to 
define the manifold C(m, F)  of  all m-quadrics in F with normal bundle prescribed as 
T ' P  m+l ] a m ~ n* ,  the manifold (~(m, F)  (possibly empty) is a complex manifold of  

dimension m + 2 and for every c 6 C(m,  F)  there is a natural isomorphism between T,! and 

n°(Qc ,  O(NQc)) .  
From now on it will be always supposed m > 2. 

Definition 2.1. Let B be a complex manifold of  even (complex) dimension 2 -m and let 
/3 : F --+ B a holomorphic principal C*-bundle on B. A normal m-quadric in F is a holo- 
morphically embedded m-quadric with normal bundle isomorphic to T ' P  m+l [ Qm ~ H*; 
the normal quadric is transverse if the fibres of F are never tangent to the quadric. An 

immersed m-quadric of B is called F-normal if it is the image on B of a transverse normal 
m-quadric of F. 

T h e o r e m  2.2. Let B a complex manifold of (complex) dimension 2. m (with m > 2) and 

let ~ : F ~ B be a holomorphic principal C*-bundle on B; the space C = C(B, F) of 

all transverse normal quadric of F is a complex manifold of dimension m + 2, the space 

R = R(B, F) of all F-normal quadrics of B is a complex manifold of dimension m + 1. 

The map p : C ~ R sending the quadrics of F to quadrics of B makes C a holomorphic 

principal C*-bundle on R. The manifold C has a natural holomorphic connection 1 -form 

33 and the manifold R has a natural structure of a holomorphic Riemannian metric ~,. That 

is the 5-tuple ( C, p, R, ~,, 33) is a Kaluza-Klein structure. 
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Proof Let us denote by (7 the (m + 2)-dimensional manifold for all normal m-quadrics Qp, 
of F;  the holomorphic tangent space T'  ^ pr p,C to a point of C is isomorphic to H°(Qp,,  0 
(IV Qp,)),  where N Qp, is the normal bundle of  Qp, in F (see the remarks above). The space 

C has a natural conformal structure Z, (see the remarks above) given assigning for every p '  

in C the cone in T~,6 " corresponding to the set {s E H°(Qp,,  (Q(NQp,)) : s has a zero ]. 
P 

The action ot of  C* on F induces an action a on (7; since for every compact subset K of F 

the subset X ( K )  = {u E C*: ~u(K) • K 5~ 0} is compact in C*, for every compact subset 

H of  C the subset W ( H )  = {u E C*: Otu(H) M H ¢ 0} is also compact in C*. Therefore 

for every p '  in C the group {u 6 C* : c~u (p ')  = pr} is the finite group of  e(p~)th roots 
of  1 in C* for a certain positive natural number e(p r) which is locally constant and then 

constant on the connected components of  (7. We will consider on C a new action defined by 

u • p~ = otv(p') where V e(p') = U; this action is well defined and moreover has the property 
u . p ~ = p t o n l y f o r u =  1. 

Denoting by A the fundamental field on C defined by the action, let us denote by C = 

C(B, F) the open subset of  C of  transverse normal quadrics of  F ,  this is exactly the set 

where A is not a null vector. We are going to prove that on C there is a (unique) holomorphic 

metric g '  defining the conformal structure 3,, invariant by the action and with quadratic norm 

- k  2 (where k = mo/eo is the fixed constant) on all the vectors of  the field A. In fact since 
! 

A is never zero on C for every point P0 in C it is possible to find a local chart (V', 4~ ~) at 
p~ and a polydisc A m+l x B 1 of C m+2 where the action by u becomes the product by u in 

the last coordinate and where moreover ,~ is defined by a holomorphic metric gt~. There is 
t! a holomorpbic function f ( u ,  p') in a neighborhood of  (1, p~) such that exp( f (u ,  p ' ) )  • gp, 

gives g" in u - p~ transferred in p~ via the action by u; taken a function h(p ~) such that 
! I!  Ap,(h) = (Of/Ou)(1, p') the new metric tensor g~ defined by gp, = exp(-h(p~))  - gp, 

verifies the equality LA (gP) = 0 (its coefficients do not depend on the last coordinate). 

Normalizing gt on the field A we get a metric g '  with the desired properties and that 

is the unique one in its conformal class• The unicity implies that these local metrics patch 

together giving a global metric on C. In C it is therefore possible to find a base ~ = { Vj'}j~j 
of the above coordinate open subsets where moreover two points are in the same orbit of  

the action if and only if they have equal all the coordinates except, at most, the last one. 

Otherwise near a point p~ of  C would be possible to find two sequences of  points {p~ }, {Pn'} 
t ptt t converging to P0 with n = u(n) • Pn but such that not all the first m + 1 coordinates of  pr n 

and Pn' are equal. Since in a suitable neighborhood of  p~ for I u - 1 [ < ~ the points p~ and 
u • p '  have equal all the first m + 1 coordinates, it should be definitively I Un - 1 [ >_ ~ > O, 

moreover the sequence {Un} contained in the compact subset W({p~} U ' " {Pn, Pn }) would 
• ' = P t ~ w i t h u 0 ¢  1. have a subsequence converging to u0; but this would imply u0 P0 

Let us consider now the quotient space R ~ of  all orbits of  C via the action of  C* and the 
quotient map p : C ~ R ~. The map a : R'  ~ R defined by tr([Q~]) = / ~ ( Q t )  is well 

defined and surjective. It is also injective because/~ (Q')  = / 3  (Q") implies there is a complex 
non-zero number u such that Q" = u-  Q'. In fact the set X -- {v c C*: otv(Q r) N Q" ~ 0} 
is an analytic subset of  C* and therefore a finite set X ---- {vl . . . . .  Vr}; for at least one 
(and only for one) of  these complex numbers vj the intersection Qrt 71 o% (Q')  has a non- 
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empty interior, for that number we have Q" = ~vj (Q' ) .  We will therefore identify the space 

R(B,  F) with R' via the map or. 

The space R'  is a Hausdorff  topological space: in fact if {P'n }, {P~} are nets of equivalent 
l l points of  C with P'n ---- u(n) • Pn and converging respectively to p ,  p"  we have {u(n)} C 

W({p~n, pn~} U {p~, p"}) and therefore p"  = u • p '  for a non-zero complex number u limit 

point for the net {u(n)}. For every chart (V',4~') in V' let us define V = p ( V ' )  and 
~b " V ~ C m + l  by dp(p(p')) = ( z l ( p  ' )  . . . . .  zm+l(p')) .  The map 4~ is a well-defined 

homeomorphism between V and an open subset of  C m+l. The family V = {Vj}j~j is a 

holomorphic atlas making R'  a complex manifold of  dimension m+l .  

For every p '  in C the set lip, = {X' E T ' ,C"  g ' ( X ' , A )  = 0} is a non-degenerate 
P 

(m+l)-dimensional  subspace of  T~,, the map p.p, : Hp, ~ T'p(.,) is an isomorphism and 

the metric tensor g defined on R'  by gp(p,)(p,(X'), p,(Y')) = gl(,(X', Y') for X' ,Y '  in HI,, 

is a well defined holomorphic metric. 

The map p • C --+ R'  makes C a principal C*-bundle on R'. In fact taken two charts 

(V',q~') and (V,q~) as in the above proof, the map • • p - l ( V )  --+ V × C* defined by 

• (u . p') = (p(p ' ) ,  zm+2(p ~) • u) for p '  in V' is well defined and it is a trivialization of C 

on V. On the bundle p • C --~ R'  the l -form co defined by co(X') = - 1/k 2 • g ' (X ' ,  A) is a 

holomorphic connection form such that g '  = p* g - k 2 . co ® co. [] 

When ~ • N ( P )  ~ E ( M )  is a holomorphic principal C*-bundle it is possible to com- 

pare the original Kaluza-Kle in  structure (P ,  rr, M, g, co) and the one obtained applying the 

previous theorem: (C(E ,  N),  p, R (E ,  N), ~, d)). 

When Qc = Qp' the spaces Tp, and T;'. are both naturally isomorphic to the space 

H ° ( Q K ,  O ( N  Qp,)), therefore the map X " P --~ C(E ,  N)  defined by X(P') = c if Q~ = 

Qp, is a holomorphic regular map. If X(P')  = ;((P") then the points p '  and p"  have the 

same null geodesics; two (distinct) such points will be called totally conjugate. 

T h e o r e m  2.3. Let (P ,  7r, M, g, co) be a Kaluza-Klein structure such that 

(1) ~ : N ( P ) --+ E ( M)  is a holomorphic principal C*-bundle, 

(2) P does not have couples of  totally conjugate points, 
then the map X : P ~ C ( E, N)  makes ( P, Jr, M,  g, co) an open Kaluza-Klein substructure 

o f  (C(E,  N), p, R(E ,  N),  ~, dg). 

Proof Since all the structures in P and C can be reconstructed from the fundamental 

field and the holomorphic conformal structure, it is enough to observe that the map X, 

translates these ingredients in the corresponding ones. There is nothing more to add about 

the conformal structures since we have defined Zc exactly as the set of  tangent vectors in 

c corresponding to those sections in H°(Qc ,  O ( N  Qc)) that have a zero somewhere. Some 

caution is necessary instead about the actions since we have modified, in the course of  the 

proof of  the previous theorem, the natural action on C; however, since we suppose there 

are not totally conjugate points in P,  the action by u 6 C* on P takes Qp, in itself only for 

u = 1, therelbre the action does not really change in X (P) .  ZI 
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With some more conditions on P it is possible to obtain moreover that g (P)  = C (if C 
is connected). 

Theorem 2.4. Let (P,  zr, M, g, o9) be a Kaluza-Klein structure such that 

(1) E : N ( P )  --+ E ( M )  is a holomorphic principal C*-bundle, 

(2) P does not have couples o f  totally conjugate points, 

(3) P is civil, 

(4) P is Stein, 
(5) H2(p,2~) = 0, 

(6) the null geodesic sets in P are contractible, 

then the map g : P --+ C ( E, N)  is an isometry between ( P, g') and a connected component 

o f  (C(E,  N) ,~ ' ) .  

Proof  The added hypotheses are those required by Theorem III.5 in [L] in order to guarantee 

that the map X is a conformal biholomorphism between P and the connected component 
of  C containing X (P).  [] 

A natural problem in this context is the following: What does B represent for the Kaluza- 
Klein structure (C(B, F),  p, R ( B, F),  ~, , Co) ? 

Associated to every element b ~ B there is an immersed curve Yb = {P ~ R: b E Qp}. 

Under a natural condition on the principal bundle/3 : F --+ B it is possible to prove that 
each of  these curves is composed by one or more world-lines of particles in the triplet. 

The condition required is the presence on the bundle space F of  a holomorphic contact 

structure. The contact structure does not intervene in the construction of  the Kaluza-Klein 

5-tuple (C(B,  F),  p, R(B,  F),  ~, d~), but when it is present it guarantees that a certain "con- 

formal connection" induced by F on C coincides with the "natural conformal connection" 

defined by the conformal structure of  C and there are not "conformal torsion tensors" 
contributing (cf. [L, 11.2 and 1II.3]). 

More precisely this means that as b' varies in F the curves Yb' = {C E C : '  b' c Qc} 

are immersed curves in C whose components are the null geodesics of  (C, ~'); without the 

contact structure on F the curves Yb' are, in general, only null curves and (locally) geodesics 

for a holomorphic connection different from the (holomorphic) Levi-Civita connection of  
(C, ~'). 

Definition 2.5. Let F be a complex manifold, a holomorphic contact structure on F is a 

holomorphic distribution H of  complex tangent hyperplanes on F such that the Frobenius 
bilinear map • : H x H --~ T ' F / H  (defined by q~(X,Y) = [ X , Y ] m o d H )  is non- 
degenerate. 

A distribution H of  hyperplanes on F is a contact structure if and only if the manifold F 

has an odd (complex) dimension 2-m + 1 and H is locally the zero-set of  a (holomorphic) 
1-form 0 such that 0/x (O0) ̂ m is never zero. 
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T h e o r e m  2.6. Let B a complex manifold o f  (complex) dimension 2. m (with m > 2) and 

let/3 : F --+ B be a holomorphic principal C*-bundle  on B. When the bundle manifold 

F has a contact structure the subsets Yb = {P E R: b E Qp} (as b varies in B) make a 

family  o f  immersed curves in R = R(  B, F)  whose components are exactly the supports o f  

the world-lines o f  the particles in the triplet. 

Proof  The curves  Yb in R correspond in R '  to the curves  )Tb = {[Q]: b E / 3 ( Q ) }  images  

th roughp of  the curves  Yb' = {Q ~ C: b' c Q} of  C (when fl(b') = b). The curves  Yb' 

are, for  the Theorems  III.2 and 111.3 of  [L], immersed  curves  in C whose  components  are 

the null geodes ics  o f  (C, g ' )  (cf. also the remarks  above);  therefore,  since in C a (non-zero)  

null vector  is never  vertical,  the Yb are immersed  curves  o f  R' .  

For  every  null geodes ic  y : D --+ C running along a Yb' we want  to prove that p o y : 

D ~ R '  is the world- l ine  of  a part icle  (running along Y~(b'))- Since the p rob lem is local we 

choose  a chart V '  in C and a chart  V in R '  in such a way that V = p ( V ' )  and V'  ~-- V x G 

has as coordinates  the coordinate  funct ions z L . . . . .  z m+l of  V and moreove r  a coordinate  

w on the open region G in C such that Ou, = A. 

The curve  y = (t~, 13) : D ~ V x G is stationary with respect  to the " length"  defined 

by the "a rc - length"  £ : T 'C  ~ C given by £ ( X ' )  = g ' ( X ' , X ' )  = £ ( z , w , Z ,  W) = 

g a b ( Z )  " Z a " Z b - k 2 • [~Oa(Z) - Z a + W] 2, therefore as a geodes ic  verifies the Lagrange  

equat ions  

(1) ~oJ 9 --  constant  = Q, 

(2) Vart = Q .  (1" I2Jrt) ,  

and as a null curve  

(3) g(&,&) - k 2 • Q2 = 0. 

Changing  the affine parameter  on y we  can suppose Q = a • e0 (with ~r E { - 1 , 0 ,  1}): 

then p o y ---- a is the wor ld- l ine  o f  a part icle in the triplet. 

Converse ly  let ~ : D ~ V be the wor ld- l ine  of  a particle with rest-mass and 

charge (~r 2 • m0, cr • e0) with Vart = cr "e0  - (1" £23 60; restricting, in case, D we can 

find a ho lomorphic  map /3  : D ~ G such that fi = ~r • e0 - O ) a  • Ot a • The  map  F = (ct, r )  : 

D -+  V x G verifies the Lagrange  equat ions  (1) and (2) and therefore is a geodesic ,  more-  

over  g'(~), ~)) = ~r 4 • m 2 - t72 • k 2 • e 2 = 0. I f  Yb' contains  y ( D ) ,  then or(D) runs along 

Y,B(b'). El 

When  the mani fo ld  P is civi l  with d im P > 4 the mani fo ld  N ( P )  has a contact  structure 

H (cf. [L, 111.3]). For  every  y e N ( P )  the hyperplane  H z is genera ted  by the union of  

tangent  l inear spaces T~ Qp, as p '  varies in the null geodes ic  y .  The  contact  structure H is 

invariant by the act ion o f  C* on N ( P ) .  

Therefore  the theorem above applies to the case ~ : N ( P )  --+ E ( M )  in which we are 

most  interested. 
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3. Meromorphic symplectic forms 

Let B a complex manifold of  complex dimension 2 • m and let fl : F -+ B be a 

holomorphic principal C*-bundle with a holomorphic contact structure H invariant by the 

action of  C*; on F we denote by A the fundamental holomorphic (never zero, invariant) 

vector field whose integral curves are the orbits of  the action in F. 

We can find on B an open coveting H = {(Uj, ~ j ) } j e j  by Stein local charts with images 

in polydisks of  C 2"m and with contractible finite intersections, and on F a similar open 

coveting 1; = {(I,~, ttlj)}jEJ in such a way that the map/3 looks like the projection on the 

first 2-m coordinates and the action of  C* on ~ like the multiplicative action on the last 

coordinate. We can suppose the contact structure H is defined on Vj by the 1-form Oj and 

choose for every bundle 13 : Vj --~ Uj a holomorphic section sj : Uj ~ Vj with constant 

value in the last coordinate. 

It is possible to prove that on every Uj there is a holomorphic function rj such that the 

quotient (OjJA)/(rj  o [3) is a never zero function on Vj; the 1-forms c~j = sf[Oj/(OjJA)] 

verify the relation 

~k - otj = O[log(sk/sj)], 

therefore the meromorphic 2-form (r = 0otj, it is well defined on B with poles on the zero- 

set of  the functions (rj). The form a = tr (F,  H,  B) (independent from the open coverings 

chosen) will be called the curvature form o f  the bundle F on B with contact structure H. 

Let B be a complex manifold and D an effective divisor defined in every point b in B by 

the germ of the function rb in Ob. On B we will consider the sheaf Z l of  germs of  closed 

h01omorphic 1-forms, the sheaf SIp = ( l / r )  - O 1 of germs of  meromorphic l-forms with 

"simple poles in D", the image sheaf 7 "2 = 0 S 1 (made of  germs of  meromorphic 2-forms), 

the subsheaf Z ~  of  S 1 of  closed 1-forms and the quotient sheaf ~ 9  = z l o / Z l  (with 

support contained in the support of  D); all these sheaves are coherent and are connected by 
the following two exact sequences: 

0 , 7-2 , 0  

In this context we will consider the map PD : H ° ( B ,  T2)  ~ H I ( B , T ~ )  defined by 

PD (or) = q* (8 (~))  that gives for every t r a  kind of  "cohomological residue" of  (r along D. 
As usual we will denote by (~ )  the divisor defined in B 2"m by the meromorphic 2 • m- 

form ~ .  

Definition 3.1. Let B a complex manifold of  dimension 2. m and S a regular hypersurface 
of  B a Konstant-Souria u form on B with poles in S i s a meromorphic 2 -form tr in H 0 (B, Ts2 ) 
such that 
(1) ((r Am ) = --(m + 1)- S, 

(2) cr IB-S extends to an integral class on B, 
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(3) Ps(cr) = O. 
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When S = 0 a Konstant-Souriau form reduces to a (holomorphic) symplectic form sat- 

isfying the Weil ' s  integrality condition as in Konstant-Souriau theory of  geometric quanti- 

zation (cf. [W]). 

T h e o r e m  3.2. Let  B a complex  mani fold  o f  d imension 2 - m ,  a meromorphic  2-form cr 

on B is the curvature f o r m  o f  a pr incipal  C*-bundle on B fu rn i shed  with an invariant 

contact  structure i f  and  only i f  it is a Kons tant -Sour iau  f o r m  on B with poles  in a regular 

hypersurface.  

Proo f  Let cr be the curvature form of  the principal C*-bundle /3 : F --+ B furnished 

with an invariant contact structure H.  Let us consider on B and F two open coverings 

bl = {(Uj,  ~ j ) } j e J  and V = {(V), qJj)JjeJ as in the definition of curvature form (cf. the 

remarks above) and let us suppose H be defined on Vj by the 1-form Oj, there is, on Uj N Uk, 

a holomorpbic function tjk with value in C* such that Oj = tjk " Ok. We pose j~ = OjJA 

and call T the zero-set of  the functions (j~),  the l - form 0 = ( 1 / f j )  • ~ is a well-defined 

meromorphic form on F without zeros and with poles in T; moreover: 0] A = 1 on F - T 

and 0 is invariant by the action. 

We have f j  = tjk • f k  and on every U) it is possible to find a function rj such that 

f j / ( r j  o/3) is never zero on Vj. Called D the divisor defined by the system (rj)  and S its 

support, we have T = f l - I  (S). The meromorphic 1-form c~j = sj*(0) = [ 1 / ( f j  osj)]-sj* (0j) 

is in S~)(Uj) without points of indeterminancy and verifies the equations 

Otk -- otj =- O[log(hjk)] and O ----/3*(aj) + ko; (O log(uj ) ) ,  

where hjk is the never zero holomorphic function defined in Uj n Uk by the equality 

hjk (b) • sj (b) -= Sk (b) and uj is the last coordinate function for the chart (Vj, ¢Pj); as in the 

definition we take cr = Oetj. 
In Vj we have (forgetting, for a moment,  about the index j):  (crAm) ___ (crAm A 0log(u))  = 

( f - ( m + l )  . 0 A (00) Am) = --(m + 1) • D ;  the 1-form r • ot is holomorphic in Uj and since 

r • [O(r.  oe)] Am - m .  Or A ( r .  ~)  A [O(r • or)] A(m-l) = r m+l • crAm is never zero it must be 

Orj 7~ 0 when rj = 0, therefore S is regular hypersurface and D = 1 • S. 

The cocycle (Cjkt) with Cjkt = (1/2rr i)  • [log hjk -'[- log hkt + log hi j] defines an integral 

class in H Z ( B ,  C) whose restriction to B - S is the class of  the closed 2-form cr. 

At last Ps(cr ) = q*[otk -- otj ] = [0 log(hjk  ) rood Z l] = 0. 

Conversely let cr be a Konstant-Souriau form with poles on the regular hypersurface S 

of  B and l e t / / / b e  an open covering of  B with the usual properties and such that on every 

Uj the ideal sheaf of  S is defined by the function rj and cr is expressible as cr = O/3j with 

/3j in S ~ ( U j ) .  

The condition Ps(cr) = 0 implies that for every j there is a 1-form #J in Z ~ ( U j )  and for 

every couple j ,  k there is a holomorphic function rjk on Uj A U k  such that (/3k --/3j) -- (#k  -- 

~ j )  = Orjk. 
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Let us define on every Uj the form otj = /3 j  - / z j ,  this is a form in S ~ ( U j )  with Oaj = ~r 

and otk - otj : 0 [log (exp (r jk) )  ]; the cocycle (rj~ + rkt ÷ rt j )  is made of  constant functions 

and restricted to B - S defines the class of  ~ in H 2 ( B  - S,  C). Since this extends to an 

integral class in B we have exp[rjk + rkl + rtj ] = 1 in H 2 (B, C*); there is a 1-cochain (b jk)  

of non-zero complex numbers such that exp(rjk + rkt + rlj ) : b jk  • bkt " bl j  o n  Uj  N Uk A U I 

and therefore if we pose gjk  = e x p ( r j k ) / b j k  we get 

otk - otj = O[log(gjk)]  and gjk  • gkt " gt j  = 1. 

Moreover  the form a j  does not have points of  indeterminancy, in fact (forgetting, for a 

moment, about the index j )  since the form r m+l • 6 Am ~- r . [O(r • or)] Am -- m .  Or A (r • 

Or) A [O(r • or)] A(m-l) is never zero it must be (r • Ot)b ~ 0 when r (b )  = O. 

Let us consider the principal C*-bundle/3 : F ~ B defined by the transition functions 

(g jk) ,  the  open charts ~ = ~ - l ( u j )  and the natural biholomorphism Ej : Vj ---> Uj x C*. 

The 1-form Oj = Ef[r j  • otj + rj • 0 log(uj)] ,  where uj  is the last coordinate in Uj × C*, is 

holomorphic in ~ and never zero; these different forms are related on the intersections by 

the equations Oj = ( r j / r k )  o [~ • Ok and therefore for every point b t in F it is well defined a 

linear hyperplane lib, in T[, F as the kemel  of  any of  the forms Oj defined at b t. 

The distribution (Hb ' )b ' cF  is a contact structure on F because Oj A (OOj) Am = r m+l . 

O[log(uj)]  A O "Am is never zero. [] 

When the manifold P is civil with dim P > 4 and e : N ( P )  ~ E ( M )  is a holomorphic 

principal C*-bundle the theorem above applies and proves that E ( M )  is furnished with a 

Konstant-Souriau meromorphic symplectic form a with poles in a regular hypersurface S 

of  E ( M ) .  

Denoted by E o ( M )  the subset made of all null geodesics of  (M, g) it is not difficult to 

prove that E o ( M )  C S. 

In fact if a is a null geodesic in (M, g), taken a point p in the support of  ~ and a null 

vector V in p tangent to the geodesic it is possible to find a point p~ in P and a null vector 

W in p '  projecting on V and such that the fundamental vector Ap,  is tangent in W to the 

null tangent cone ,~p, in pr. This implies there is a holomorphic curve ~ : D --+ Z,p, with 

~(0)  = W and ~ (0 )  = ap , ;  the map ~ induces a map ~ : D --+ N ( P )  such that ~(0) : y 

(a null geodesic of  P that projects on ~)  and ~(0) = a × .  In the same time ~(0) is in T¢ Qp, 

and therefore the null geodesic y belongs to the set T of  the previous proof, then a belongs 

t o S .  
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